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Abstract

Seismic response of liquid storage tank can be strongly influenced by the presence of submerged components. This
modification of the dynamic characteristics of the liquid tank systems with internal components can be very useful for
improving their seismic behavior. In this paper, a pressure-based finite element technique has been developed to analyze
the slosh dynamics of a partially filled rigid container with bottom-mounted submerged components. The fluid is assumed
homogeneous, isotropic, inviscid, and to exhibit only limited compressibility. The problem is linearized assuming the
frequency of the exciting oscillation not in the immediate neighborhood of the natural slosh frequency, so that the slope of
the free surface is small. The linearized problem is spatially discretized using the Galerkin weighted residual method.
Earthquake excitations are used as the prescribed boundary condition. The solution is advanced in time using Newmark’s
constant average acceleration method. The developed code has been used to investigate the effect of a bottom-mounted
rectangular component on the slosh dynamics of a liquid-filled rigid container. Numerical results obtained are compared
with the existing solutions to validate the code. The parametric study of the tank—fluid system shows the importance of
height, width and location of the submerged structural components.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Sloshing is a potential source of disturbance in liquid storage containers. The motion of liquids in rigid
containers has been the subject of many studies in the past few decades because of its frequent application in
several engineering disciplines as exemplified by fuel sloshing in liquid propellant launch vehicles, aircrafts,
and suspension bridges, oil oscillation in large storage tanks, water oscillation in a reservoir and sloshing in the
nuclear fuel storage pool due to earthquake and similar other situation, and in biomechanical systems.
Although the problem is generally nonlinear, the linearization of the system can give satisfactory results in
many cases, such as the interaction of small structure motions with acoustic waves in fluids (acoustoelastic
fluid—structure interaction model). Two formulations are mainly practiced, both using the displacements as the
unknowns for the structure. For the fluid, the unknowns are either the displacements, or a force-like quantity,
such as the pressure or the velocity potential or the displacement potential. The sloshing response of the
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Nomenclature g acceleration due to gravity
K, fluid stiffness matrix

a position of the block (distance of left wall M, fluid mass matrix

of the block from the left wall of the N; interpolation function

tank) P nodal pressure
B, liquid free surface boundary P variation of pressure with respect to time
By, bottom boundary of the component P hydrodynamic pressure in excess of the
By, interface boundary between component hydrostatic pressure

wall and the fluid ity normal component of the structural
By, bottom boundary of the tank acceleration
B interface boundary between tank wall w width of the block

and the fluid pr density of the fluid
c velocity of sound in the fluid medium

fluid—structure system is found to be very sensitive to the characteristics of the ground motion and
configuration of the system [1-7]. For ground excitation dominated by low-frequency contents, the sloshing
response increases significantly and the contribution of the higher sloshing modes increases [2]. To understand
the dynamic behavior of the liquid storage tanks and to provide proper design codes, many research groups
have concentrated their investigation on the seismic behavior of the liquid containers and on the
earthquake resistant design. Regarding the importance of these systems, specially their seismic safety for
avoiding the adverse consequences such as fire, explosions, structural failure, environment pollution, better
understanding of their seismic behavior is still necessary. In spite of the continuous efforts to enhance the
performance of liquid containers against seismic loading, many liquid tanks have been severely damaged in
major earthquakes all over the world. The field studies report that liquid-filled containers are usually
damaged due either to excessive axial compression caused by overall bending of the containers or to
sloshing of the contained liquid with insufficient freeboard between the liquid surface and the tank roof [8].
Since the earthquakes are unpreventable and unpredictable the only course open to the engineers is to
design and built the fluid—structure system so that the loss of property and life can be minimized.
Particularly for the spent nuclear fuel storage pool, clear understanding of sloshing phenomena is
required for finding freeboard and to prevent overflow, and for the estimation of hydrodynamic pressure
on the pool and submerged components. The spent nuclear fuel storage pool structure should assure
the safety of the stored spent fuels and its structural integrity against design earthquake loads. The presence
of equipments or components submerged in the liquid may significantly change the dynamic response
of the fluid-structure systems. Although there have been numerous studies on the sloshing behavior in
fluid—structure systems, there are a limited number of studies reported on the sloshing response in a
liquid tank with single or multiple submerged components. Choun and Yun [1,2] have presented an
elegant analytical treatment of rectangular tanks with a submerged structure using potential formulation and
small-amplitude water wave theory and have observed that under a typical earthquake submerged
structure shows a tendency to decrease the sloshing amplitude and hydrodynamic pressure. Watson and
Evans [9] studied the sloshing frequencies of a rectangular tank system containing a partially or fully
submerged rectangular block, centrally mounted on the floor, using eigenfunction and Galerkin expansions
approaches.

The focus of this study is to provide the engineers with a set of tools to accurately and efficiently model the
slosh dynamics phenomena with particular reference to the classic acoustoelastic sloshing problem of a liquid-
filled container with submerged component experiencing seismic excitation. In the present study the
characteristics of slosh displacement, slosh frequencies and mode shapes and the hydrodynamic pressure over
the container wall and around the submerged component for a prescribed excitation have been addressed for
rectangular containers. The present study also investigates the effects of height, width and location of an
internal block on the sloshing characteristics and dynamic responses. The fluid domain is discretized using
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4-noded quadrilateral elements with pressure as the degree of freedom. The problem is formulated using the
Galerkin’s principle, which provides the basis for the present discretization. Newmark’s constant average
acceleration technique, a finite difference based iterative time stepping scheme, is employed to advance the
solution in the time domain. Numerical results for the rigid containers with a bottom-mounted rectangular
component are compared with available existing solutions. Through comprehensive parametric studies of the
systems with submerged component, the present analyses attempt to elucidate the underlying response
mechanism and the effects and relative importance of the parameters involved. The characteristics of sloshing
behavior, primarily liquid frequencies, mode shapes and forced response characteristics have been studied in
this paper. The results indicate that the size and the location of the component significantly influence the slosh
response characteristics.

Since early 1950s several researchers have studied the linear slosh models for simple geometries.
This study presents a numerical method for two-dimensional sloshing analysis of rectangular liquid
storage tanks with a submerged component using a pressure-based finite element formulation and the
lincarized water wave theory. Usually compressibility proves to be negligible in the general linearized
theory of waves on a homogenecous body of liquid. The examples presented in this paper fall in that
category. However, in many practical cases as in the waste storage tanks and spent fuel reprocessing
tanks in nuclear facilities, the fluid is inhomogeneous and the density variation is non-uniform but
considerable. For the fluid—structure interaction problems, Muller [10] has shown mathematically that
eigenvalues of a structure in contact with a compressible fluid are lower than the corresponding
eigenvalues if the fluid were incompressible. Further, a numerical example is also presented to establish the
same considering both air and water as the working fluid. Since compressibility can be included without
considerable complexity and cost within the framework of linearized pressure-based formulation, the
compressibility is included in this study for a probable future application where compressibility should not be
neglected.

2. Governing equations and formulation

A pressure-based formulation has been considered in the present study. The linearized governing equation
for an inviscid, compressible, irrotational flow in terms of excess pressure variable p(x, z, ¢) is the well-known
wave equation [11], written as

1 .
V2p(x,z, 1) =§j)’(x,z, ) in Q. (1)

The pressure formulation has certain advantages over the displacement or velocity potential based
formulations. Unlike the displacement formulation, the number of unknown in this formulation is only one
per node (pressure), which results in considerable saving of computer storage and time, particularly for large
three-dimensional problems. Also, the pressure field at the structure—fluid interface is directly obtained unlike
other methods where the pressure has to be calculated from velocity or displacement or their potential. This
would be particularly advantageous in solving a fluid—structure interaction problem where pressure on the
interface need to be computed at each time step. Besides these major advantages, the compressibility comes in
a natural way in a pressure formulation and can be retained without incurring considerable additional efforts
and cost.

The fluid boundary, in general, is composed of three types of boundaries. These are solid-liquid interface
boundary, free surface boundary, non-reflecting or radiating type boundary. For liquid sloshing in a container
the radiating type boundary is neglected. The appropriate boundary conditions for these boundaries are
as follows:

1. Solid-liquid interface boundary: Continuity of normal displacement at the solid—liquid interface leads to the
following relation for the linearized problem:
op

= —pyity - On By and B.y. )
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2. Free surface boundary: The linearized wave theory [12] facilitates the satisfaction of the free surface
boundary condition on the undisturbed free surface. The free surface boundary conditions are linearized
to give

D = Pygun, (3a)
o P
PPl g on By. (3b)

Eq. (3a) is used to deduce the free surface displacement.
3. Bottom boundary: Considering the bottom boundary to be rigid, at the bottom of the tank or component

Op/on =0 on By and Bg. ()]

Here py, i1, and g are the fluid density, structure’s normal acceleration at the structure—fluid interface and
acceleration due to gravity. For a rigid container, the structural acceleration ii, is identical to the prescribed
ground acceleration.

Applying divergence theorem to the residual form of the governing differential equation for the liquid and
substituting Eqgs. (2)—(4), one obtains

2 2 2

_r[o°p op 10p / _7[0Op ;

N =L+ S -—=—£|de- N | = w| dI’
/Q [axz + 0y? 2 0 Buysen on +eri

—/NT[a—er—}dr—/ NT{a—p]drzo (5)
By on g Bibcb on

in which the total boundary B = By, + B/+ By, + Beyw + Bep, is as defined in Fig. 1(a). Using Green—Gauss
theorem and introducing the Galerkin finite element approximation the above equation reduces to the
following set of algebraic equations:

Myp +K;p =F, (6)
where My is the mass matrix for a fluid element and is given by

1 1
(Mp); =— / N/N;dQ + - / N/ N;dr. (7
< Ja gJr

Similarly, K, the stiffness matrix for the fluid element, is given by

ON; ON; ON ON;
Ky), = L ——1)de 8
s /Q(ax ox oy ay> ©

@, (b)

4
da—.-l

L

| T

Btw Bcb Btw d

Fig. 1. (a) Problem configuration and nomenclature; (b) typical Mesh.
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and the load vector F is
Fi= [ Nlpjii,dr. )
Iy

For free vibration problems, the load vector F in Eq. (6) becomes zero.

The computation is carried out using 4-noded isoparametric fluid elements. A finer mesh is adopted near the
free surface, where sloshing effects are more pronounced. A typical computational mesh is shown in Fig. 1(b).
MATLAB [13] functions have been used to extract the eigenvalues and eigenvectors from the computed
stiffness and mass matrices. Newmark’s constant-average acceleration [14] technique has been used to solve
the dynamic forced vibration equation. At each time step the set of algebraic equations are solved using a
skyline LDL" solver.

3. Numerical examples and discussion

Free vibration analyses are first carried out for a rectangular container with a rectangular block mounted at
the bottom. Computations are performed with a 15m wide block located at the center of the tank floor of a
30m wide and 13 m deep (liquid depth) tank for several block heights (/). The computed frequencies against
block height to liquid height ratios (%/d) are presented in Table 1 and are compared with those obtained by

Table 1
Sloshing frequencies of the tank system with a central block for different 4/d ratio (L =30m, d = 13m, w = 15m)

hid w; (rad/s) w, (rad/s) w3 (rad/s)
Present Choun and Yun [1] Present Choun and Yun [1] Present Choun and Yun [1]
0. 0.929 0.927 1.418 1.422 1.755 1.756
0.2 0.897 0.898 1.415 1.415 1.744 1.746
0.4 0.849 0.842 1.404 1.406 1.742 1.740
0.6 0.731 0.731 1.343 1.347 1.733 1.734
0.8 0.550 0.552 1.190 1.192 1.730 1.732

First Mode Second Mode Third Mode

Fourth Mode Fifth Mode Sixth Mode

Fig. 2. Sloshing modes with a centrally located block (#/d = 0.6, w/L = 0.2).
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Choun and Yun [1]. The results are found to be in excellent agreement. Choun and Yun [1] have also shown
that their results are in very good agreement with those obtained from the ADINA [15] code. The reduction in
the fundamental sloshing frequency with increase in the /4/d ratio is quite noticeable. The decrease in higher
mode frequencies is considerably less.

The corresponding first six natural sloshing mode shapes for the centrally located block (¢ = 12m, w = 6 m
and & = 7.8 m) are shown in Fig. 2. Similar mode shapes for a case with the block located off-center (¢ = 6 m,
w=3m, h=7.8m) are shown in Fig. 3. Comparison of the mode shapes could not be presented as the
complete configuration of the cases reported in Ref. [1] are not available. However, it appears that the mode
shapes agree quite well.

The sloshing responses of the tank system, subjected to the EW component of the El Centro earthquake
(Fig. 4), are presented in the form of transient slosh wave height variation in Figs. 5(a)—(c) for #/d = 0.0, 0.5
and 0.8, respectively. The adopted tank system is 10m wide having a liquid depth of Sm. This particular
tank system is considered for all the subsequent dynamic analyses reported in this paper. The rec-
tangular block is located at the center (¢ = 4m, w =2m and & = 3m) for the computations in Fig. 5. The
results clearly indicate a longer sloshing period when the submerged component is higher. The peak
wave amplitude is found to reduce marginally with increase in the component height. The results are in
reasonably good agreement with those obtained by Choun and Yun [2]. The differences in the peak values

Third Mode

//\//\U\

1

Fourth Mode Fifth Mode Sixth Mode

First Mode

Fig. 3. Sloshing modes with an off-central block (a/L = 0.2, h/d = 0.6, w/L = 0.1).
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Fig. 4. The ground motion for the EW component of the El Centro earthquake.
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Fig. 5. Free surface displacement at X = 0 for different block heights: (a) #/d = 0.0, (b) h/d = 0.5, (c) h/d = 0.8.

may be attributed to the modal damping ratio of 0.005 that Choun and Yun [2] have considered in their
analytic solution with 10 sloshing modes. The solutions due to Choun and Yun [2] are reproduced from the
reference in Fig. 6.

A detailed parametric study of the slosh dynamic characteristics of the tank system is carried out to evaluate
the influence of the size and location of the submerged block.

4. Slosh response due to change in the height of the block

Effect on sloshing characteristics of the tank system due to change in height of the submerged component
has been studied keeping the width and location of the block fixed. A 2m wide block (w/L = 0.2) located at
the center is chosen to study the effect of //d ratio. The input ground motion considered is the EW component
of the El Centro earthquake.

Fig. 7 shows the transient pressure variation at the mean surface on the right wall of the tank for different
submerged component height to depth of the liquid ratio, (//d). It is observed from the figure that the pressure
reaches to a maximum value of about 5892.5Pa at 46.9 s for #/d = 0.5 and to 5529.5Pa at 49.9 s for i#/d = 0.8.
Both the values are considerably smaller than the maximum pressure of 6250Pa when the submerged
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Fig. 9. Hydrodynamic pressure distribution along component wall.

component is absent. Also, in both the cases the peak occurs at a later instant, almost towards the ter-
mination of the excitation, compared to the no block case. Figs. 8 and 9 show the pressure distribution
along the tank and the component wall at a particular time instant for various component heights. The
temporal variations of hydrodynamic pressure at the top and bottom of the component wall are presented
in Figs. 10 and 11. It is clearly evident from the figures that as the component height increase the
maximum hydrodynamic pressure along the container wall decrease while the maximum pressure along the
component wall increase. The increase in the peak hydrodynamic pressure along the component wall with
increasing /i/d is quite considerable. This also suggests an increase in the sloshing amplitude near the block

with increasing A/d ratio.
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5. Slosh response due to location of the block

The transient variation of slosh wave amplitude at the free surface, due to EW component of the El Centro
earthquake excitation, of the tank system with the submerged block placed at different location but width and
height fixed at 2 and 2.5m, respectively, is shown in Fig. 12. The figure shows that the slosh response is
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Fig. 11. Hydrodynamic pressure variation at bottom left corner of the component.

considerably affected by the location of the block for the case considered. The peak sloshing amplitude with an
off-centered block appears to be nearly the same as with a centered block, but the peaks occur at different
instants. It is found that the peaks for an off-centered block case occur around 20-25s, while that for the
centered block occur after 40 s, which is almost towards the termination of the excitation. Fig. 13 presents the
slosh wave height at the left and right walls against time for a = 2.5m (a/L = 0.25). It is found that maximum
slosh wave height of nearly 56 cm occurs around 23 s. The hydrodynamic pressure variation along the left and
right wall of the component and container are presented in Figs. 14—17. From Figs. 14(a) and (b) it can be seen
that at a particular instant the hydrodynamic pressure on the two walls of the centrally located block are



372 S. Mitra, K.P. Sinhamahapatra | Journal of Sound and Vibration 304 (2007) 361-381

B0

all=0.1 ]
« al=025
a0 - — - all=04

20

Amplitude (cm)
o

-20

-40

= 1 I 1 I 1 ]

Time (sec)

Fig. 12. Variation of slosh wave amplitude at X = 0 for different component locations.

i i
—o

o

UL “ I

Amplitude (cm)
o
E

a0k

&0 1 1 L L L |

Time (sec)

Fig. 13. Time histories of surface wave amplitude at the tank walls (¢/L = 0.25).

nearly equal and opposite, giving rise to a zero hydrodynamic force. But when the block is placed towards the
container wall, the pressure on the component walls acts in the same direction and a large hydrodynamic force
acts on it. This situation prevails for most of the time of response. However, at some instances the pressures on
the two component walls are opposing but their difference being quite considerable a large hydrodynamic
force always acts on the block when it is very close to the tank wall. The variations of the hydrodynamic
pressure at the top and bottom of the component wall are shown in Figs. 15 and 16. When the block is very
close to the container wall, the pressure reaches a very high value during the early stages of the motion. The
highest peak occurs almost at the same time when the ground motion has the highest peak. Subsequently, it
falls down to more moderate values but still remains much larger than that due to a central or nearly central
block. The reason may, perhaps, be attributed to the complex interaction between the propagating, reflected
and scattered waves. The hydrodynamic pressure distributions at a particular instant along the left and right
walls of the tank, shown in Figs. 17(a) and (b), indicates that pressure on the left wall (nearer to the block)
increases as the block moves closer to it while the pressure on the right (far) wall reduces. The considerably

large increase in the pressure on the near wall, up to the block height, when the block is very close to the wall
(a/L = 0.1) is worth noting.

6. Slosh response due to change in width of the block
The same tank system is studied for the same prescribed excitation for different component width to the

width of the tank ratio for a fixed component height of 2.5m and liquid depth of 5m. The block is located at
the center of the tank floor. It is found from the results presented in Fig. 18 that with increasing w/L ratio the
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Fig. 17. Hydrodynamic pressure along tank walls: (a) left wall of the tank, (b) right wall of the tank.
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Fig. 19. Hydrodynamic pressure along left wall of the component.

surface wave amplitude increases. The increase is marginal at the initial stage of the response but considerable
at a later time. It is also observed from the results that the hydrodynamic pressure on the container and
component walls increases with the width of the component. Figs. 19 and 20 show the pressure along the walls
of the tank and component due to different width of the component at a particular time instant. The pressure
variations at the top and bottom left corner of the component are shown in Figs. 21 and 22. The results show
that the pressure increases on both the tank and component walls as the submerged component becomes
wider. The temporal variations of the surface wave height at the left and right walls are plotted in Fig. 23 for
w/L = 0.4 where slosh response is largest. It is found that maximum slosh wave height of about 76 cm occurs
at around 46 and 50s.
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7. Conclusion

A pressure-based Galerkin’s finite element code that can handle liquid sloshing due to free lateral

vibration of ground supported rectangular storage tank with submerged internal component has been
developed.
The analysis is restricted to linear problems in the sense that only small amplitude waves have been assumed.
The method has been applied to a number of problems and some typical results are presented that
assess the accuracy and applicability of the method. The pressure formulation has great advantages
in the computational aspect compared to the displacement and the velocity potential based for-
mulations. Unlike the displacement formulations, the number of unknown per node in this case is
only one. Also, the pressure at the structure-fluid interface is directly obtained which would offer a
considerable computational advantage, particularly for a fluid—structure coupled simulation, over those
formulations where pressure need to be computed from the solution variables at each time
step. Combined effects of these can provide quite considerable savings in memory and cost in a
three-dimensional fluid—structure interaction problem. The fluid compressibility comes in a natural way in
this formulation and the numerical implementation is quite straightforward and without considerable
penalties.

It is found from the study that the height and width of the submerged structure have very strong
influence on the slosh dynamics. It is observed that the hydrodynamic pressure on the free surface of the
rectangular tank shows considerable variation with time for different width and height of the component.
The peak wave amplitude at the wall is found to decrease marginally with the height of the submerged
component for the tank system and ground motion considered. It is also observed that with increasing
height of the component, the hydrodynamic pressure on the tank wall decreases but increases on the
component wall. This implies an increase in the sloshing amplitude near the component structure.
When the block becomes broader the peak slosh amplitude is found to increase both at the wall and in the
vicinity of the block. Also, with increasing component width, the hydrodynamic pressure increases
on both component and container walls. For the rectangular container and external excitation considered
in the study the maximum hydrodynamic pressure and the maximum slosh wave height of 76 cm occur at
around 45s from the start of motion for w/L = 0.4 and //d = 0.5. The hydrodynamic pressure on the walls
also increases as the block becomes broader and taller. For the particular tank system considered here, the



(a) 2500
2000

1500
1000

500

-500

Hydrodynamic Pressure (Pa)
=

-1000

-1500

-2000

-2500

4000

—
O
~

3000

2000

1000

-1000

Hydrodynamic Pressure (Pa)
o

-2000

-3000

-4000

5000

—
O
~

4000

3000

2000

1000

-1000

-2000

Hydrodynamic Pressure (Pa)
o

-3000

-4000

-5000

Fig. 21. Hydrodynamic pressure variation at top left corner of the component: (a) w/L = 0.2, (b) w/L = 0.3, (c) w/L = 0.4.

Mitra, K. P. Sinhamahapatra | Journal of Sound and Vibration 304 (2007) 361-381

Il Il 1 1

60

0 10 20 30 40 50 60
Time (sec)
T T
1 1 1 1 1
0 10 20 30 40 50 60
Time (sec)
T T T T T
1 Il 1 Il L
0 10 20 30 40 50
Time (sec)

379

location of the block is found to have much less effect on the sloshing frequencies. However, the dynamic
response clearly shows some special features of interests. The peak sloshing amplitude for the off-centered
cases does not differ considerably than that of the centered block but the time of occurrence has advanced
markedly. The dynamic pressure on one tank wall (the near wall) increases quite considerably as the
submerged component moves towards it, while on the other (far) wall the pressure decreases. When the
component is quite close to the wall, the pressure on the component walls acts in the same direction for most
of the time while it acts in the opposite direction for a component located at the center or very close to the
center. The pressure on the near wall of the component, particularly on the lower portion, becomes very large
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Fig. 22. Hydrodynamic pressure variation at bottom left corner of the component: (a) w/L = 0.2, (b) w/L = 0.3, (c) w/L = 0.4.

during the early stages of the motion when the ground motion also has the largest magnitudes. Subsequently,
pressure falls down to more tolerable values albeit considerably higher than that on a central or nearly central
block.

The developed computer code is useful in predicting the sloshing displacement, the pressure developed in a
liquid-filled container due to sloshing. Information regarding the sloshing displacement is effective in deciding
the level of liquid in tanks, fixing the level of an outlet pipe in a boiler suppression pool, etc. The prediction of
wall displacement due to sloshing is useful in the design of liquid-filled containers. It is shown that the
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Fig. 23. Time histories of surface wave amplitude at both wall for w/L = 0.4.

formulation can be employed with confidence to predict the static and dynamic response of contained fluids
with submerged body.
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